162 research outputs found

    Anonymity and Information Hiding in Multiagent Systems

    Full text link
    We provide a framework for reasoning about information-hiding requirements in multiagent systems and for reasoning about anonymity in particular. Our framework employs the modal logic of knowledge within the context of the runs and systems framework, much in the spirit of our earlier work on secrecy [Halpern and O'Neill 2002]. We give several definitions of anonymity with respect to agents, actions, and observers in multiagent systems, and we relate our definitions of anonymity to other definitions of information hiding, such as secrecy. We also give probabilistic definitions of anonymity that are able to quantify an observer s uncertainty about the state of the system. Finally, we relate our definitions of anonymity to other formalizations of anonymity and information hiding, including definitions of anonymity in the process algebra CSP and definitions of information hiding using function views.Comment: Replacement. 36 pages. Full version of CSFW '03 paper, submitted to JCS. Made substantial changes to Section 6; added references throughou

    Gamma oscillatory firing reveals distinct populations of pyramidal cells in the CA1 region of the hippocampus

    Get PDF
    Hippocampal place cells that fire together within the same cycle of theta oscillations represent the sequence of positions (movement trajectory) that a rat traverses on a linear track. Furthermore, it has been suggested that the encoding of these and other types of temporal memory sequences is organized by gamma oscillations nested within theta oscillations. Here, we examined whether gamma-related firing of place cells permits such discrete temporal coding. We found that gamma-modulated CA1 pyramidal cells separated into two classes on the basis of gamma firing phases during waking theta periods. These groups also differed in terms of their spike waveforms, firing rates, and burst firing tendency. During gamma oscillations one group's firing became restricted to theta phases associated with the highest gamma power. Consequently, on the linear track, cells in this group often failed to fire early in theta-phase precession (as the rat entered the place field) if gamma oscillations were present. The second group fired throughout the theta cycle during gamma oscillations, and maintained gamma-modulated firing at different stages of theta-phase precession. Our results suggest that the two different pyramidal cell classes may support different types of population codes within a theta cycle: one in which spike sequences representing movement trajectories occur across subsequent gamma cycles nested within each theta cycle, and another in which firing in synchronized gamma discharges without temporal sequences encode a representation of location. We propose that gamma oscillations during theta-phase precession organize the mnemonic recall of population patterns representing places and movement paths

    Aberrant Neuronal Dynamics during Working Memory Operations in the Aging HIV-Infected Brain

    Get PDF
    Impairments in working memory are among the most prevalent features of HIV-associated neurocognitive disorders (HAND), yet their origins are unknown, with some studies arguing that encoding operations are disturbed and others supporting deficits in memory maintenance. The current investigation directly addresses this issue by using a dynamic mapping approach to identify when and where processing in working memory circuits degrades. HIV-infected older adults and a demographically-matched group of uninfected controls performed a verbal working memory task during magnetoencephalography (MEG). Significant oscillatory neural responses were imaged using a beamforming approach to illuminate the spatiotemporal dynamics of neuronal activity. HIV-infected patients were significantly less accurate on the working memory task and their neuronal dynamics indicated that encoding operations were preserved, while memory maintenance processes were abnormal. Specifically, no group differences were detected during the encoding period, yet dysfunction in occipital, fronto-temporal, hippocampal, and cerebellar cortices emerged during memory maintenance. In addition, task performance in the controls covaried with occipital alpha synchronization and activity in right prefrontal cortices. In conclusion, working memory impairments are common and significantly impact the daily functioning and independence of HIV-infected patients. These impairments likely reflect deficits in the maintenance of memory representations, not failures to adequately encode stimuli

    Aerial dissemination of Clostridium difficile spores

    Get PDF
    Background: Clostridium difficile-associated diarrhoea (CDAD) is a frequently occurring healthcare-associated infection, which is responsible for significant morbidity and mortality amongst elderly patients in healthcare facilities. Environmental contamination is known to play an important contributory role in the spread of CDAD and it is suspected that contamination might be occurring as a result of aerial dissemination of C. difficile spores. However previous studies have failed to isolate C. difficile from air in hospitals. In an attempt to clarify this issue we undertook a short controlled pilot study in an elderly care ward with the aim of culturing C. difficile from the air. Methods: In a survey undertaken during February (two days) 2006 and March (two days) 2007, air samples were collected using a portable cyclone sampler and surface samples collected using contact plates in a UK hospital. Sampling took place in a six bedded elderly care bay (Study) during February 2006 and in March 2007 both the study bay and a four bedded orthopaedic bay (Control). Particulate material from the air was collected in Ringer's solution, alcohol shocked and plated out in triplicate onto Brazier's CCEY agar without egg yolk, but supplemented with 5 mg/L of lysozyme. After incubation, the identity of isolates was confirmed by standard techniques. Ribotyping and REP-PCR fingerprinting were used to further characterise isolates. Results: On both days in February 2006, C. difficile was cultured from the air with 23 samples yielding the bacterium (mean counts 53 – 426 cfu/m3 of air). One representative isolate from each of these was characterized further. Of the 23 isolates, 22 were ribotype 001 and were indistinguishable on REP-PCR typing. C. difficile was not cultured from the air or surfaces of either hospital bay during the two days in March 2007. Conclusion: This pilot study produced clear evidence of sporadic aerial dissemination of spores of a clone of C. difficile, a finding which may help to explain why CDAD is so persistent within hospitals and difficult to eradicate. Although preliminary, the findings reinforce concerns that current C. difficile control measures may be inadequate and suggest that improved ward ventilation may help to reduce the spread of CDAD in healthcare facilities

    The immunopeptidome from a genomic perspective:Establishing the noncanonical landscape of MHC class I–associated peptides

    Get PDF
    G.B., D.B., K.W., A.P., R.F., T.R.H., S.K., and J.A.A. received support from Fundacja na rzecz Nauki Polskiej (FNP) (grant ID: MAB/3/2017). D.R.G. received support from Genome Canada & Genome BC (grant ID: 264PRO). D.J.H. received support from NuCana plc (grant ID: SMD0-ZIUN05). H.A. received support from Swedish Cancer Foundation (grant ID: 211709). H.G. received support from United Kingdom Research and Innovation (UKRI) (grant ID: EP/S02431X/1). C.P. received support from Fundação para a Ciência e a Tecnologia (FCT) through LASIGE Research Unit (grant ID: UIDB/00408/2020 and UIDP/00408/2020). A.L. F.M.Z., C.P., A.R., A.P., and J.A.A. received support from European Union’s Horizon 2020 research and innovation programme (grant ID: 101017453). C.B. received support from Agence Nationale de la Recherche (ANR) through GRAL LabEX (grant ID: ANR-10-LABX-49-01) and CBH-EUR-GS 32 (grant ID: ANR-17-EURE0003). S.N.S. received support from Cancer Research UK (CRUK) and the Chief Scientist's Office of Scotland (CSO): Experimental Cancer Medicine Centre (ECMC) (grant ID: ECMCQQR-2022/100017). A.L. received support from Chief Scientist's Office of Scotland (CSO) NRS Career Researcher Fellowship. R.O.N. received support from CRUK Cambridge Centre Thoracic Cancer Programme (grant ID: CTRQQR-2021\100012).Tumor antigens can emerge through multiple mechanisms, including translation of non-coding genomic regions. This non-canonical category of antigens has recently gained attention; however, our understanding of how they recur within and between cancer types is still in its infancy. Therefore, we developed a proteogenomic pipeline based on deep learning de novo mass spectrometry to enable the discovery of non-canonical MHC-associated peptides (ncMAPs) from non-coding regions. Considering that the emergence of tumor antigens can also involve post-translational modifications, we included an open search component in our pipeline. Leveraging the wealth of mass spectrometry-based immunopeptidomics, we analyzed 26 MHC class I immunopeptidomic studies of 9 different cancer types. We validated the de novo identified ncMAPs, along with the most abundant post-translational modifications, using spectral matching and controlled their false discovery rate (FDR) to 1%. Interestingly, the non-canonical presentation appeared to be 5 times enriched for the A03 HLA supertype, with a projected population coverage of 54.85%. Here, we reveal an atlas of 8,601 ncMAPs with varying levels of cancer selectivity and suggest 17 cancer-selective ncMAPs as attractive targets according to a stringent cutoff. In summary, the combination of the open-source pipeline and the atlas of ncMAPs reported herein could facilitate the identification and screening of ncMAPs as targeting agents for T-cell therapies or vaccine development.Publisher PDFPeer reviewe

    Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.

    Get PDF
    BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution

    SMAP L-Band Microwave Radiometer: Instrument Design and First Year on Orbit

    Get PDF
    The Soil Moisture Active Passive (SMAP) L-band microwave radiometer is a conical scanning instrument designed to measure soil moisture with 4 percent volumetric accuracy at 40-kilometer spatial resolution. SMAP is NASA's first Earth Systematic Mission developed in response to its first Earth science decadal survey. Here, the design is reviewed and the results of its first year on orbit are presented. Unique features of radiometer include a large 6-meter rotating reflector, fully polarimetric radiometer receiver with internal calibration, and radio-frequency interference detection and filtering hardware. The radiometer electronics are thermally controlled to achieve good radiometric stability. Analyses of on-orbit results indicate the electrical and thermal characteristics of the electronics and internal calibration sources are very stable and promote excellent gain stability. Radiometer NEdT (Noise Equivalent differential Temperature) less than 1 degree Kelvin for 17-millisecond samples. The gain spectrum exhibits low noise at frequencies greater than 1 megahertz and 1 divided by f (pink) noise rising at longer time scales fully captured by the internal calibration scheme. Results from sky observations and global swath imagery of all four Stokes antenna temperatures indicate the instrument is operating as expected

    Measurement of Angular Distributions and R= sigma_L/sigma_T in Diffractive Electroproduction of rho^0 Mesons

    Full text link
    Production and decay angular distributions were extracted from measurements of exclusive electroproduction of the rho^0(770) meson over a range in the virtual photon negative four-momentum squared 0.5< Q^2 <4 GeV^2 and the photon-nucleon invariant mass range 3.8< W <6.5 GeV. The experiment was performed with the HERMES spectrometer, using a longitudinally polarized positron beam and a ^3He gas target internal to the HERA e^{+-} storage ring. The event sample combines rho^0 mesons produced incoherently off individual nucleons and coherently off the nucleus as a whole. The distributions in one production angle and two angles describing the rho^0 -> pi+ pi- decay yielded measurements of eight elements of the spin-density matrix, including one that had not been measured before. The results are consistent with the dominance of helicity-conserving amplitudes and natural parity exchange. The improved precision achieved at 47 GeV, reveals evidence for an energy dependence in the ratio R of the longitudinal to transverse cross sections at constant Q^2.Comment: 15 pages, 15 embedded figures, LaTeX for SVJour(epj) document class Revision: Fig. 15 corrected, recent data added to Figs. 10,12,14,15; minor changes to tex
    corecore